
High-Resolution
Sprite-Oriented Color Graphics

Y ou don't need Logo to use sprites
for animation with the illusion of depth.

Steve Ciarcia
POB 582

Glastonbury , CT 06033

A funny thing happened on my
way to writing this article. Very rare-
ly do I ever know what BYTE's
monthly theme is when I am planning
a project. The editors tell me, but I
am always working on so many hard-
ware projects simultaneously that I
can't keep track. And I sometimes
juggle my project schedule at the last
minute.

This time, three weeks before my
deadline, I told Senior Editor Gregg
Williams that I was designing a sprite-
graphics interface for August. He re-
minded me that the theme of the issue
was Logo and that my project was a
perfect enhancement to a Logo pack-
age produced by Terrapin Inc. of
Cambridge, Massachusetts.

'What's Logo7" I thought to my-
self, but not wishing to appear com-
pletely ignorant, I took his word for it
and sent my wire-wrapped prototype
board to Leigh Klotz Jr. and Patrick
Sobalvarro at Terrapin. It took them
less than a week to devise ways to

Copyright © 1982 by Steven A. Garcia.
All rights reserved.

Certainfigures and diagrams pertaining to the

TMS9918Aare reprinted courtesy of Texas In-

struments Inc.

control my sprite-graphics interface
using the Logo language.

Their help came just at the right
time. Since I was struggling with us-
ing assembly language to draw the
pictures necessary for this article, I
gratefully accepted a copy of the Ter-
rapin MIT Logo language from them,
along with the Logo routines they
wrote to manipulate sprites. Using
Terrapin's software, I quickly came
to understand why Logo and a sprite-
graphics interface are a natural com-
bination.

The key component is
the TMS9918A
Video Display

Processor.
But you don't have to have Logo to

use the sprite-graphics board. You
can approach this project either as a
versatile color graphics interface that
you can mold to fit your require-
ments or as a sprite-graphics system
for use with Terrapin MIT Logo. In
either case, you will not be dis-
appointed.

The TMS9918A VDP
The key component in this month's

project is an integrated circuit from
Texas Instruments, the TMS9918A

Video Display Processor(VDP). This
chip offers features that are not, to
my knowledge, found in any other
graphics system. A summary of its
capabilities is shown in table 1.

The TMS9918AVDP is intended to
be interfaced to a host microproces-
sor through an 8-bit bidirectional
data bus and three control lines. The
VDP's output is a composite color
video signal, which can be fed direct-
ly into a video monitor or, with the
addition of an RF (radio-frequency)
modulator , to the antenna terminals
of a television set.

Up to 16K bytes of dynamic RAM
(random-access read/write memory)
can be attached directly tothe VDP.
This VRAM (video RAM), which
contains the data that defines the
graphics image to be displayed, is
automatically refreshed by the VDP.
The VRAM needsno direct connec-
tion to the host computer.

The host processor interacts with
the 9918A by reading from or writing
to its registers or the VRAM. The in-
terpretation of the data flow is con-
trolled by the states of the three con-
trol lines . The timing of register and
VRAM updatesis asynchronous with
the video output; thus the host pro-
cessor can communicate with the
VDP at any time.

August 1982 C BYTE Publications Inc 57

1. display resolution of 256 by 192 pixels
2. 16 colors, including black and transparent
3. supports 16K bytes of separate video memory
4. real-time interrupt capability
5. 32 sprites for simulation of three-dimensional effects
6. composite video output
7. four display modes:

a. graphics 1 (256 by 192 dots-limited color)
b. graphics 11 (256 by 192 dots-extended color)
c. text mode (24 lines of 40 user-defined characters)
d. multicolor mode (64 by 48 low-resolution positions)

8. external video and sync inputs
9. automatic, transparent dynamic RAM refresh

Table 1: Characteristicsof the Texas Instruments TMS9918A Video Display Pro-

cessor integrated circuit.

O
0

SPRITES
(OBJECT-ORIENTED)

L BLACK

"EXTERNAL VDP INPUT

BACKDROP (SOLID COLOR)

PATTERNS (CHARACTER - ORIENTED)

Figure 1: The TMS9918A's screenimage canbe envisionedas a set of overlapping dis-

play planes sandwiched together. Image objects in planesfiguratively closer to the

viewer (the top layers of the sandwich) seem to be in front of objects on planes further

away (the bottom layers of the sandwich). Thetop 32sprite planesare in front of the

pattern plane, the backdropplane,and the external VDP (video) plane,which cancon-

tain a video image fromalmostany compatible external source. The 9918A combines

the multipleimage sourcesto form a singlecomposite image.

Distinctive Architecture
The TMS9918A VDP displays an

image on the screen that can be best
envisioned as a set of overlapping dis-
play planes sandwiched together, as
shown in figure 1. This distinctive
graphics architecture makes possible

the simulation of depth relationships
between animated objects in the dis-
play without the use of complex
hidden-line algorithms.

Image objects in planes figuratively
closer to the viewer (the top layers of
the sandwich) have higher priorities

of visibility than the planes further
away (the bottom layers of the sand-
wich). When the objects on two dif-
ferent planes attempt to occupy the
same spot on the screen, the object on
the higher-priority plane will be seen
by the viewer. For an object on one of
the lower-priority planes to be visi-
ble, all planes in front of the object's
plane (the higher-priority planes)
must be transparent at that point.

The top 32planes are designated
for the display of special graphics ob-
jects called sprites, which I'll explain
shortly. Behind the sprite planes is the
pattern plane. The patternplane is
used for text and graphicsgenerated
in one of four color-display modes.
This pattern plane works like a con-
ventional single-plane, spriteless
graphics system. The resolution
varies depending on the display mode
selected.

Behind the pattern plane is the
backdropplane. Its area is larger than
the other planes so that it can form a
border around them. The backdrop is
always either 1 of 15 solid colors or
transparent.

The last, rearmost plane is called
the external VDP plane, which can
allow one 9918A chip to overlay its
display over the output of a second
9918A. But the external VDP plane
could contain a video image from
almost any compatibleexternal
source such as a TV camera, a video-
tape recorder, or another computer
display, as long as the external source
is synchronized to the 9918A's Clock
and Reset/Sync inputs. It might also
be necessary to adjust the signal
voltage levels.

The four image sources (sprites,
pattern plane, backdrop, and external
input) can be combined to create a
single composite image in the 9918A.
In most applications, however, the
9918A's external VDP input is not
used, and the image is formed from
the pattern, backdrop, and sprite
planes.

What Are Sprites?
A sprite is a graphics object of a

specified pattern appearing on its
plane in a position determined by a
single coordinate pair specifying the

58 August 1982 © BYTE Publications Inc

(2a)

SPRITE 8

SPRITE 7

SPRITE 6

SPRI15

(2b)

SPRITE 2

SPRITE 1

SPRITE 0

SPRITE 3

0

I SPRITE 4 0

Figure 2: A possible application for sprites: displaying agraphics imageof an automobile driving along aroadthrough hilly country,
pasta field containing grass anda single tree, under a sky populated by clouds.

The background, comprising thehills, grass, road, and sky,is "painted" on the pattern plane. Sprites 0 and 1 are set up with pat-
terns representing the tree's foliage and trunk. The sections of the car are drawn using sprites 2 through 5. Finally, three clouds are
drawn usingsprites 6 through 8. Each of the sprites can be made to movesmoothlyacross the screen bycontinuously changinga
2-byte address pointer in the sprite-attribute table.

As sprites 2 through 5 (the car sprites) are moved past thepositionoccupied by sprites 0 and 1(the two tree sprites), the VDP selects
the displayed pixel values at each point from the highest-priority planethat isnot transparent at that point; therefore ourview of the
car is automatically blocked out as it passes behind the tree.

sprite's location on the screen in the
horizontal and vertical axes. By
changing this one set of coordinates,
the sprite can be moved easily and
quickly across the screen.

Sprites come in two sizes: 8 by 8
pixels (picture elements) and 16 by 16
pixels; they can be expanded to 32 by
32 pixels by using the magnification
feature. Their resolution of move-
ment is one pixel on the 192- by
256-pixel viewing area. Each sprite
plane contains exactly one sprite; all
the plane's area outside the sprite pat-
tern is transparent. The sprite plane
with the highest priority is identified
as sprite 0, and the one with the
lowest priority is sprite 31.

The ease of programming complex
graphic displays through the use of
sprites is the most significant feature
of the TMS9918A.

Example of Sprite Use
Let's consider a possible applica-

tion: displaying a graphics image of
an automobile driving along a road
through hilly country, past a field
containing grass and a single tree,
under a sky populated by clouds (see
figure 2). Starting from the fore-
ground, we see that there is a tree be-
tween our point of view and the road-
way. Naturally we expect the car to
be obscured by the tree when passing
behind it. And the car should obscure
the background hills wherever it
goes.

This scene is set up on the 9918A as
follows. The background, comprising
the hills, grass, road, and sky, is
"painted" on the patternplane in a
way similar to the use of any conven-
tional display.

Since the size of the sprites is

limited and each sprite can be only
one color, it sometimes becomes nec-
essary to use multiple sprites to define
a single entity in the picture. (When
the entity is to be moved across the
screen, all the sprites that form it
must be moved at the same time.) So,
following this plan, sprites 0 and 1 are
set up with patterns representing the
tree's foliage and trunk. The sections
of the car (front and rear of the body
plus the two visible tires) are drawn
using sprites 2 through 5. Finally,
three clouds (of slightly different
colors) are drawn using sprites 6
through 8. Sprite planes 9 through 31
are left transparent.

Animation Comes Easy
Once the static display has been

established,we can seewhy sprites
are so usefulin animating the display,

August 1982 (c) BYTE Publications Inc 59

(1a) (ib)

Photo 1: A step-by-step illustration of the use ofsprites andthe concept of plane priority. The yellow turtle (sprite 3) is
programmed topassfrom left to right past the green box (sprite 0), the blue box (sprite 1), and the red box (sprite 2). The
transparent pattern plane and backdrop cause the background to beblack.

that is, causing parts of it to move.
What would ordinarily be an exten-
sive programming task is handled
almost entirely in hardware by the
9918A.

Unlike spriteless systems, moving
the car does not require that the soft-
ware repaint the entire display pat-
tern. Simply by continuously chang-
ing a 2-byte address pointer in the
sprite-attribute table in VRAM, each
of the sprites can be made to move

smoothly across the screen.
In addition, as sprites 2 through 5

(the car sprites) are moved past the
position occupied by sprites 0 and 1
(the two tree sprites), the VDP selects
the displayed pixel values at each
point from the highest-priority plane
that is not transparent at that point;
therefore our view of the car is auto-
matically blocked out as it passes
behind the tree. Similarly, if the
clouds are different colors (perhaps

white and gray) and made to pass
each other, they will also appear to
pass in front or behindin a pseudo-
three-dimensional view. This hidden-
view capability is provided in hard-
ware and requires no special soft-
ware , unlike conventional graphics
systems.

(2a) (2b)

Additional Examples
Photo sequences 1 and 2 are step-

by-step illustrations of the use of

Photo 2: Somepriorities havebeen exchanged from photo 1: theshapes havebeen set upon a newpermutation of planes.
The green and red boxesremainsprites 0 and 2, respectively, but the turtleis now sprite 1 and the blue box is sprite 3. The
boxes now overlapin a different order; instead of the sequence green, blue, red, we nowhave green,red, blue.

60 August 1982 © BYTE Publications Inc

The turtle is obscured fromview as it passesfrom left to right past the three boxes, beginning inphoto 1b. It isnot fully

visible until it emergesagain onthe right in photo id. Since the three boxes reside on sprite planes ofhigherpriority than

the turtle's plane, the pixel values of the boxes take precedence in being displayed wherever the sprite shapes intersect.
Also, the three boxes overlap accordingto their planes' priorities.

sprites and the concept of plane prior-
ity. Both examples use four sprites,
but the priorities of the planes used
for each sprite shape are changed to
demonstrate different effects. Three
of the sprites are solid-color boxes,
and one is a shape described as a tur-
tle. The turtleis programmed to pass
from left to right past the boxes.

In photos la through id, the green
box is sprite 0, the blue box is sprite 1,
and the red box is sprite 2. The yellow

turtle is sprite 3 . No other sprites are
involved, and the pattern plane and
backdropare transparent, resulting in
a black background.

You'll notice that the turtle is
obscured from view as it passes from
left to right past the three boxes, be-
ginning in photo 1b. Since the three
boxes reside on sprite planes of higher
priority than the turtle 's plane, the
pixel values of the boxes take prece-
dence in being displayed wherever the

sprite shapes intersect. Observe also
that the three boxes overlap accord-
ing to their planes' priorities. The
green covers the blue, and the blue
covers the red. As for the turtle, it has
the lowest priority and is not fully
visible until it emerges again on the
right in photo ld.

In photos 2a through 2d, some pri-
orities are exchanged: the shapes have
been set up on a new permutation of
planes. The green and red boxes re-

(2c) (2d)

As the turtle (now sprite 1)passesfrom left to right, it passesin front of the red box (sprite 2) and the blue box (sprite 3),
as shown inphoto 2b, but it goes behind the green box (sprite 0), in photo 2c.

August 1982 © BYTE Publications Inc 61

0

0

1

2

3

21

BIT

3 4 5 6 7

VERTICAL POSITION (Y COORDINATE)

HORIZONTAL POSITION (X COORDINATE)

NAME

EARLY

CLOCK

BIT

0 0 0 COLOR CODE

SPRITE - ATTRIBUTE TABLE

SCREEN IMAGE

0 1 1 0 0 1 0 0

0 0 1 0 0 1 0 0

0 0 1 1 1 1 0 0

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 0 1 1 1 1 0 0

0 0 1 0 0 1 0 0

0 1 1 0 0 1 0 0

SPRITE- GENERATOR TABLE
8-BY-8 -PIXEL SPRITE

Figure 3 : The binary coding foran 8-by-8-pixel sprite patternis stored in VRAM in the sprite-generator tablein 8 bytes.Eachbit in

the pattern coding corresponds to one pixel in the displayed pattern. Wherever a I is stored in a pixel's pattern bit, the sprite will be

colored; where the bitis a 0, the spritewill be transparent.Eachsprite can be onlya singlecolor.

Each sprite's attributes are stored in the 128-byte sprite-attribute table. Each set of attributes takes up 4 bytes. In each set of at-
tributes, the first two bytes set the x,y coordinates of the sprite on the screen, referenced from the screen's upper left corner. The third
attribute byte contains the sprite's "name" (actually the low-order bits of the address of its segment of the sprite-generator table), and
the fourth byte defines the sprite's color, according to the 4-bit color valuesgiven in table 2.

Hexadecimal
Value

Color

0 transparent
1 black
2 medium green

3 light green
4 dark blue
5 light blue

6 dark red
7 cyan
8 medium red

9 light red
A dark yellow
B light yellow

C dark green
D magenta
E gray

F white

Table 2: Four-bit binary codes used by
the 9918A to specify the color of a pic-
ture element or color pattern.

main sprites 0 and 2, respectively, but
the turtle is now sprite 1 and the blue
box is sprite 3. The first feature of
note is the reordering of the overlap-
ping boxes. Instead of the sequence
green, blue, red, we now have green,
red, blue.

As the turtle (now sprite 1) passes
from left to right, it passes in front of
the red box (sprite 2) and the blue box
(sprite 3), as shown in photo 2b, but
it goes behind the green box (sprite 0),
as we see in photo 2c. The appearance
is that it is passing among rather than
behind the boxes.

Boxes and turtles may not impress
you very much in themselves, but re-
member that no complicated hidden-
line algorithms are needed to deter-
mine pixel precedence. Everything
I've demonstrated is done completely
in hardware on the 9918A. The only

software computation (other than in-
itially generating the sprites) is to
change a 2-byte x,y coordinate pair to
move the turtle.

There is a restriction, however, on
the number of sprites that may oc-
cupy a single horizontal scan line in
the video display raster: only four
may do so simultaneously. If a fifth
sprite is moved into a position such
that part of its pattern is on the same
line with parts of four other sprites,
the conflicting parts of the lowest pri-
ority sprite of the five will be made
transparent on the display. Also, the
number of the fifth sprite will appear
in the 9918A's status register.

Structure of Sprites
There are two basic sizes of sprites:

8 by 8 pixels and 16 by 16 pixels. The
8- by 8-pixel sprite is more often used;

62 August 1982 © BYTE Publications Inc

the binary coding for its pattern is
stored in VRAM in thesprite-genera-
tor table (SGT) in 8 bytes, as shown
in figure 3. The larger 16- by 16-pixel
sprite requires 32 bytes for storage of
its pattern coding.

Each bit in the SGT pattern coding
corresponds to one pixel in the dis-
played pattern. Wherever a 1 is
stored in a pixel's pattern bit, the
sprite will be colored; where the bit is
a 0, the sprite will be transparent.
Each sprite can be only a single color.

Either size sprite may be enlarged
(magnified) by a factor of 2 under
software control; the magnification
factor (1 or 2) is global, affecting all
sprites. The display produced for the
priority demonstration of photo se-
quences 1 and 2 consisted of 16- by
16-pixel sprite shapes made from 8-
by 8-pixel sprites magnified to be
twice as big as normal.

Each sprite's attributes (values that
determine the characteristics of color,
coordinate position, and SGT pattern
location) are stored in thesprite-attri-
bute table , or SAT, in VRAM. Each
set of attributes takes up 4 bytes; to
support 32 sprites, the table must be
128 bytes long. To findthe storage
location of a particular sprite's at-
tributes, we merely take the sprite's
number, multiply it by 4, and add the
result to the base address of the
sprite-attribute table, which is stored
in the 9918A's register 5.

In each set of attributes, the first
two bytes set the x,y coordinates of
the sprite on the screen, referenced
from the screen's upper left corner.
The third attribute byte contains the
sprite's "name" (actually the low-
order bits of the address of the sprite's
SGT segment), and the fourth byte
defines the sprite's color, according to
the 4-bit color values given in table 2.

Not Only Sprites
In addition to sprites, the

TMS9918A VDP is capable of consid-
erable graphic feats using only the
pattern plane, which operates in any
of four display modes. Not all modes
use the full 16K-byte memory capaci-
ty that the 9918A is capable of sup-
porting. The display mode and mem-
ory allocation are selected by setting

Photo 3: A Graphics-If-mode display combined with sprites,showing a
simulation of some analogsensor meters . The pattern plane contains the meter
scalesand alphanumericlabeling, while the pointerswithin the meterscales
are sprites, which are easily moved to represent changes in the measured quan-
tities.

bits in the VDP's registers. Let's look
at some of these other methods of
display.

Graphics I Mode
In the Graphics I mode, the screen

is divided up into a grid of pattern
positions arranged in 24 rows of 32
columns: a total of 768 positions.
Each pattern position contains 64 pix-

The ease of
programming complex

graphic displays
through use of the
sprites is the most

significant feature of
the TMS991 8A.

can contain two of fifteen possible
colors. The patterns can be alphanu-
meric charactersor small sections of a
large display picture, disassembled as
if it were a jigsaw puzzle.

The pattern definition in the pat-
tern-generator table consists of an
8-byte segment of memory; each bit
in the segment corresponds to one
pixel in the 8 by 8 matrix; the first
byte is the top row of the matrix, and
the second byte is the second row,
etc. The colors to be used in a given
pattern are determined by the two
4-bit values stored in the pattern's
color byte in the pattern-color table;
binary 1s and Os are set in the pattern-
generator table to turn on one color
or the other for each pixel in the pat-
tern.

els arranged in 8 rows of 8 columns.
The contents of the pattern-generator
table (PGT) in VRAM determine
what is displayed in these pattern
positions, and the pattern-color table
(PCT) defines the colors associated
with them.

In Graphics I mode , up to 256 dif-
ferent patterns can be stored; any one
of these can be used in any of the 768
pattern positions, and each pattern

Graphics II Mode
The Graphics II mode is similar to

the Graphics I mode except that it
allows 768 separate pattern defini-
tions instead of only 256. In addition,
instead of only two colors within
each 8- by 8-pixel pattern block,
Graphics II mode allows two colors
to be defined separately for each byte
in the pattern block, so potentially
sixteen colors could appear in a single

August 1982 © BYTE Publications Inc 63

Cl
r% 0.1µF

_5V
1 18 116

VBB VDD VSS

WE

RAS

CAS

VCC

IC10
4116

7

15

F5

77
AO

Al

A2

A3

A4

A5

A6

6

12

11

C2
0.1µF T

1 18 116

V88 VDD VSS

IC9
4116

6

10

13

WE

RAS

CAS
15

VCC
9

AO

Al

A2

A3

A4

A5

A6

12

11

10

13

C3
0.1µF

1 18

VBB V0D

IC8
4116

C4
0.1µF T

18 11616 11

3
SS

WE

RAS

CAS

VCC
AO

Al

A2

A3

A4

A5

A6

15

9

6

12

11

10

13

Q 0Q DQ D

14 2 14 2

Number Type +5V GND

101 TMS9918A 33 12
IC2 74LS00 14 7
IC3 4116 9 16
IC4 4116 9 16
IC5 4116 9 16
IC6 4116 9 16
IC7 4116 9 16
IC8 4116 9 16
IC9 4116 9 16
1010 4116 9 16

14

- 5V + 12V

1 8
1 8
1 8
1 8
1 8
1 8
1 8
1 8

8B VDD VSS

IC7
4116

4

WE

RAS

CAS

VC C
AO

Al

A2

A3

A4

A5

A6

Q D

14

15

9

H12

11

10

13

C5
-T-, 0. 1 SF

1 1 8

VB8 VDD

IC6
4116

16

VSS

VCC

WE

RAS

CAS

3

14

DD VSS

15

9

12

11

10

13

C6
0.1µF T

1 18 116

VBB

IC5
4116

2

WE

RAS

CAS

VCC
AO

Al

A2

A3

A4

A5

A6

Q D

POWER
CONNECTIONS

N o N

> > N 0
U, n 7 z
+ + cn

14 2

6

Figure 4: A schematic diagram of the E-Z Color Graphics Interface. Very few components are needed toconnect theTMS9918A to
the computer's electrical bus; most of the integrated circuits are simply memory components usedas the 9918A'sVRAM.

block. As you might expect, this
mode uses more memory, potentially
as much as 12K bytes of VRAM.

By allowing 768 distinct patterns
for the 768 available pattern loca-
tions, the Graphics II mode equals the
image capacity of the widely used
conventional 256- by 192-pixel dis-
plays. Virtually any scene pictured in
the Apple II high-resolution graphics
mode, for example, can be recreated
on the pattern plane of the 9918A.
With a little additional application
programming to set register pointers
and load the pattern and color tables,
the Graphics II mode can exactly syn-

thesize the point- and line-plotting
functions of conventional graphics in-
terfaces. And you still can use the
sprites.

Photo 3 is an example of a Graph-
ics-II-mode display combined with
sprites, showing a simulation of some
analog sensor meters. The pattern
plane contains the meter scales and
alphanumeric labeling, while the
pointers within the meter scales are
sprites, which are easily moved to
represent changes in the measured
quantities. Since there is no screen re-
writing required to move the dial
pointers, there is absolutely no

flicker, and the pointer placement is
an easily calculated x displacement.

Multicolor Mode
The Multicolor mode is essentially

a low-resolution graphics mode. In it,
the screen is divided into 3072 blocks,
each measuring 4 by 4 pixels, in a
48-line by 64-column format. The
color of each block can be any of the
fifteen colorsor transparent.

Text Mode
In the Text mode, the screen is

divided intoa grid measuring 24 lines
by 40 columns of patternpositions,

64 August 1982© BYTE Publications Inc

1

V8B

1

VDD

16

4

15

9

6

12

11

10

3

CS
0.1µF T

8

VBB VDD VSS

16

RAS

CAS

VC C
AO

Al
IC3
4116

0 A3

A6

C9
10µF

4

)1

15

9

6

12

11

10

13

+5V

11
R/W

RAS

CAS

1

5

6

7

10

32

31

30

29

28

27

26

25

AD7

AD6

AD5

AD4

AD3

AD2

AD1

ADO

RDO

RD1

RD2

RD3

RD4

RD5

RD6

RD7

15
CSR

CSW

MODE

14

13

+5V

33

VCC

XT2

XT1

COMVID

VSS

EXTV

DO

D1

D2

D3

D4

D5

D6

D7

INT RESET/SYNC

1C2
74 LSOO I

ClI
TMS9918A

)JP2 _)JPi

Wbw

APPLE 11 BUS

39

40

36

12

35

24

23

22

21

20

19

18

17

I C13
T33pF

C11
ss 5 TO 5OpF

1 X1
0 10.7386 MHz

T CRYSTAL C12

„33pF

+5V

R1
1OK

Q1
2N2222

R2
3311
_^ COMPOSITE
R3 VIDEO OUTPUT
3301 I

^1 EXTERNAL
00 VIDEO (VDP) INPUT

a a v a v a a a

O N d t0 0
O D p 0 p p 0 p D G

The circuit shown is intended for use with an Apple II computer, with the circuit board plugged into a slot on the motherboard
(usually slot 4), but otherversionsof the circuit for 5-100-bus computers and the IBM Personal Computer are under development.
The E-Z Color Graphics Interface may also be adapted for use with other computers.

each of which measures 6 by 8 pixels.
The Text mode is intended for display
of alphanumeric characters rather
than graphics patterns. There can be
up to 256 unique character patterns
defined at a single time to fill the 960
pattern positions. The sprite planes
are not available in Text mode. (If
you need both sprites and text simul-
taneously, you can generate character
patterns in the Graphics I mode if you
don't mind a slightly shorter line
length than in the Text mode.)

The character set is stored in the
pattern table in VRAM. Since the
cells measure 6 by 8 pixels, the char-

IC4
4116

1

VSS

WE

RAS

CAS

VCC
AO

Al

A2

A3

A4

A5

A6

D

14 12

1 C7
T 0.1/uF

acters should occupy a 5- by 7-pixel
format to allow some space between
characters. By properly setting the
register pointers,it is possible to have
the table addresses for the character
patterns equal the characters' ASCII
(American Standard Code for Infor-
mation Interchange) values, which
makes character generation easy.

Use of Memory
While the 9918A project I built has

16K bytes of VRAM, not all modes
use that much. A typical application
that uses only two colors with 256
unique 8- by 8-pixel patterns and 32

sprites would take less than 4K bytes
of VRAM . By providing 16K bytes of
VRAM with the 9918A, I found that I
often had room to store four com-
plete displays; the VDP can switch
between them by simply changing
pointers in the registers.

E-Z Color GraphicsInterface
Figure 4 is the schematic diagram of

my project for this month, which I
call the Circuit Cellar E-Z Color
Graphics Interface. The design is a
typical 9918A color graphics interface
in that it is interfaced to a microcom-
puter bus with a minimum of compo-

August 1982 C BYTE Publications Inc 65

Photo 4: The Circuit Cellar E-Z Color Graphics Interface; a prototype printed-circuit board is shown. This typical

TMS9918A color graphics interfaceis interfaced to the Apple II microcomputer bus with aminimum of components.

nents. A prototype printed-circuit
board is shown in photo 4.

This particular design has been
configured for use with an Apple II,
yet its signals are compatible with
those used in many other computer
systems. If you are willing to add a
40-pin connector and do some hand-
wiring, you can use this board with
some other kind of microcomputer.

The circuit requires an 8-bit bi-
directional data bus, one address line
(typically A0), and the two control
signals Read Enable (CSR) and Write
Enable (CSW). For operation with the
Apple II, thesesignals are formed by
logically combining the Apple's DS
(Device Select) and R/W (Read/
Write) lines. The two controlsignals
are known by differentnames in
other computer systems, but their
functions are generally compatible.
Two additionallines, INT (Interrupt)

and Reset/Sync, are shown as
jumper connections. They are avail-
able for various optional enhance-
ments, such as interrupt-driven
animation or synchronization with
external video sources.

By the time you read this article, I
shall have completed the designs for
S-100-bus and IBM Personal Com-
puter versions of the E-Z Color inter-
face. Check with the parts source
given at the end of the article for
availability.

Assembly-Language Sprite Use
As I alluded before, the 9918A is

initialized by loading values into con-
trol bits and address pointers in eight
write-only registers. Drawing and
moving sprites across the screen is
simply a matter of choosing the prop-
er register parameters and changing
the pointers.

Listing 1 on page 68 is a program
that demonstrates the routines needed
to display and move sprites. The pro-
gram is written in 6502 assembly lan-
guage to run on an Apple II computer
equipped with the E-Z Color Graph-
ics Interface, installed in mother-
board slot 4 at hexadecimal address
COLO.

The first requirement is to initialize
the eight registers and clear the
VRAM. In this example the 9918A is
set to the following operating specifi-
cations: Graphics II mode, external
video input disabled, and 16- by
16-pixel sprites, with selectable mag-
nification to twice the normal size (32
by 32 pixels) under keyboard control.

When the program starts, four dif-
ferent sprites are displayed, as shown
in photo 5. You can change the dis-
play as follows. When you press the
M key, the sprites' position coor-

66 August 1982 '" BYTE Publications Inc

dinates are incremented and the
sprites move. Pressing the 0 key and
then a hexadecimal digit 1 through F
will set one of the fifteen background
colors or transparency (shown).
Pressing the left- or right-arrow keys
will vary the sprites' size between 16
by 16 and 32 by 32 pixels.

If you are ambitious, one possible
exercise is to add more sprites to this
program. Photo 6 shows how compli-
cated things get when we have 24
sprites.

Logo Sprite Use
If you don't care to concern your-

self with the intricacies of assembly
language, you may choose to use rou-
tines written in Terrapin's version of
MIT Logo to control the E-Z Color
graphics.

Terrapin Logo normally uses a sin-
gle video monitor for all its display
functions: text listings and line draw-
ing. The colors available are limited
to the six supported by the Apple's
high-resolution graphics mode. When
the E-Z Color Graphics Interface is
installed, the regular display screen is
still used for text display and the
regular turtle graphics; the E-Z Color
board must be connected to a second
color video monitor for its display to
be simultaneously visible. Photo 7 on
page 68 shows the two-monitor set-
up. (If you don't need to see both dis-
plays at once, you could set up a
switch to select the video output of
one source or the other for display on
a single monitor.)

The Logo procedures developed by
Leigh and Pat implement user com-
mands to specify the characteristics of
each sprite; these commands include
SETSHAPE, SETCOLOR, and SXY
(for "set x,y position"). If you like,
you can map out your own sprite
shapes and incorporate them into the
routines, but some predefined pat-
terns, shown in photo 8, are pro-
vided. (People from Terrapin seem to
like turtle shapes.)

The photo sequences 1 and 2 used
earlier to demonstrate sprite planes
were done using a Logo program. For
example, the three boxes (shown in
photo 9) are drawn in Logo using the
following groups of simple state-
ments:

Text continued onpage 80

Photo 5: Display of four sprites produced by the 6502 assembly-language pro-
gram of listing 1. The user can change the displayin the followingways. Press-
ing the M keycausesthe sprites tomove. Pressing the 0 key andthen ahexa-
decimal digit 1 through F sets one of the fifteen background colors or
transparency (shown). Pressing the left- or right-arrow keysvaries the sprites'
size between 16 by 16and 32by 32 pixels.

Photo 6: The display can get complicated when 24 sprites arevisible.

August 1982 ^S; BYTE Publications Inc 67

Photo 7: When the E-Z Color Graphics Interfaceis installed in the Apple II, the regular display screenis still used for Ter-

rapin MIT Logo's text display and turtle graphics; the E-ZColor board must be connected to a second color video monitor

for its display to be simultaneouslyvisible.

Listing 1: Program written in 6502 assembly language to run on an Apple II computer equipped with an E-Z Color GraphicsInterface
installed in motherboard slot 4.

LINE# LOC CODE LINE

0002
0003

0000
0000 ***

0004 0000
0005 0000 *** VIDEO DEMO ***
0006 0000
0007 0000
0008 0000 SLOT = $40 ;SLOT = NO. X 10 HEX
0009 0000 KBD = $000 0 ;APPLE KEYBOARD DATA
0010 0000 KSTRB = $C01 0 ;KEYBOARD DATA CLEAR
0011 0000 VREG = $C08 1+SLOT ;VDP REGISTER
0012 0000 VDATA = $C08 0+SLOT ;VDP RAM
0013 0000
0014 0000 $10 00 ;PROGRAM STARTING ADDRESS
0015 1000
0016 1000 ;**************** INITIALIZE VDG *************************
0017 1000
0018 1000 A087 LDY #$87 ;REGISTER SELECT
0019 1002 A207 LDX #$07 ;INITIALIZE COUNTER
0020 1004 BDC610 INIT1 LDA ITAB,X ;LOAD INIT TABLE

68 August 1982v BYTE Publications Inc

Photo 8: The Logo procedures developed at
Terrapin Inc. provide youwith commands
such asSETSHAPE, SETCOLOR, and SXY .
Y ou can map 'out your own sprite shapes
and incorporate them into the routines, but
some predefined patterns are provided, in-
cluding a box, a rocket, a turtle,and ablock.

Photo 9: Eachof the three boxesis drawn and placedin positionwith
only four Logostatements.

Listing 1 continued:

0021 1007 209F10 JSR SREG
0022 100A 88 DEY
0023 100B CA DEX
0024 100C DOF6 BNE INIT1
0025 100E

;WRITE TO VDP
;DECREMENT REGISTER
;DECREMENT COUNTER
;DONE?

0026 100E ;************** CLEAR ALL MEMORY
0027 100E
0028 100E A040 LDY #$40
0029 1010 A900 LDA #$00
0030 1012 209F10 JSR SREG
0031 1015 A2CO LDX #$CO
0032 1017 A000 NEXF LDY #$00
0033 1019 8DCOCO FILL STA VDATA
0034 101C C8 INY
0035 101D DOFA BNE FILL
0036 101F E8 INX
0037 1020 DOF5 BNE NEXF
0038 1022
0039 1022 ;******** LOAD SPRITE
0040 1022
0041 1022 A047 LOOP LDY #$47
0042 1024 A900 LDA #$00
0043 1026 209F10 JSR SREG
0044 1029 A200 LDX #$00

;BYTE2 ADDRESS SET UP
;BYTE1 ADDRESS SET UP
;WRITE TO VDP
;COUNTER HIGH BYTE
;COUNTER LOW BYTE
;WRITE TO VDP RAM
;INCREMENT LOW COUNTER
;LOW COUNTER FULL?
;INCREMENT HIGH COUNTER
;HIGH COUNTER FULL?

ATTRIBUTES *************************

;BYTE2 AT 0700 HEX
;BYTE1 ADDRESS SET UP
;WRITE TO VDP
;INITIALIZE COUNTER

Listing 1 continued on page 70

August 1982 © BYTE Publications Inc 69

Listing 1 continued:

LINE# LOC CODE LINE

0045 102B BDCE10 NEXA
0046 102E 8DCOCO
0047 1031 E8
0048 1032 8A
0049 1033 C910
0050 1035 DOF4
0051 1037

LDA ATAB,X ;LOAD ATTRIBUTE
STA VDATA ;STORE TO VDP RAM
INX ;INCREMENT COUNTER
TXA
CMP #$10 ;TEST COUNTER
BNE NEXA ;DONE?

0052 1037 ;********** LOAD SPRITE PATTERNS
0053 1037
0054 1037 A040 LDY #$40
0055 1039 A900 LDA #$00
0056 103B 209F10 JSR SREG
0057 103E A200 LDX #$00
0058 1040 BDDE10 NEXTS LDA PTAB,X
0059 1043 8DCOCO STA VDATA
0060 1046 E8
0061 1047 8A
0062 1048 C980
0063 104A DOF4
0064 104C ;

INX
TXA

;BYTE2 AT 0000 HEX
;BYTE1 ADDRESS SET UP
;WRITE TO VDP
;INITIALIZE COUNTER
;LOAD PATTERN BYTE
;STORE TO VDP RAM
;INCREMENT COUNTER

CMP #$80 ;TEST COUNTER
BNE NEXTS ;DONE?

0065 104C ;************* CHANGE BACKGROUND
0066 104C
0067 104C ADOOCO CBACK LDA KBD
0068 104F C9CF CMP #$CF
0069 1051 D008 BNE CSIZE
0070 1053 20A610 JSR LOADN
0071 1056 A087 LDY #$87
0072 1058 209F10 JSR SREG
0073 105B
0074 105B ;*******************
0075 105B
0076 105B ADOOCO CSIZE LDA KBD
0077 105E C988 CMP #$88
0078 1060 DOOA
0079 1062 ADC710
0080 1065 29FE
0081 1067 A081
0082 1069 209F10
0083 106C C995 ONE
0084 106E DOOA
0085 1070 ADC710
0086 1073 0901
0087 1075 A081
0088 1077 209F10
0089 107A ;

BNE ONE
LDA ITAB+1
AND #$FE
LDY #$81
JSR SREG
CMP #$95
BNE MOVE
LDA ITAB+1
ORA #$01
LDY #$81
JSR SREG

;TEST FOR
;"O" KEY INPUT
;TO SET BACKGROUND COLOR
;READ KEYBOARD
;BYTE1 REGISTER 7
;STORE TO VDP

CHANGE SIZE *************************

;TEST FOR LEFT ARROW
;MAGNIFICATION X 1

;LOAD REGISTER 1
;MASK 0 ON LSB
;BYTE1 REGISTER 1
;STORE TO VDP
;TEST FOR RIGHT ARROW
;MAGNIFICATION X 2
;LOAD REGISTER 1
;MASK 1 ON LSB
;BYTE1 REGISTER 1
;STORE TO VDP

0090 107A ;****************** MOVE SPRITES
0091 107A
0092 107A ADOOCO MOVE
0093 107D C9CD
0094 107F D018
0095 1081 EECE10
0096 1084 CECF10
0097 1087 EED210
0098 108A EED310
0099 108D CED610
0100 1090 CED710
0101 1093 CEDA10
0102 1096 EEDB10
0103 1099 2C10O0 JUMP

LDA KBD ;MOVE?
CMP #$CD ;TEST FOR "M" KEY
BNE JUMP
INC ATAB
DEC ATAB+1
INC ATAB+4
INC ATAB+5
DEC ATAB+8
DEC ATAB+9
DEC ATAB+$C
INC ATAB+$D
BIT KSTRB

;SPRITEO UP
;SPRITEO LEFT
;SPRITE1 UP
;SPRITE1 RIGHT
;SPRITE2 DOWN
;SPRITE2 LEFT
;SPRITE3 DOWN
;SPRITE3 RIGHT
;CLEAR KEYBOARD

Listing 1 continuedon page 72

70 August 1982 © © BYTE Publications Inc Circle 416 on inquiry card. ^^ ^

Listing 1 continued:

LINE# LOC CODE LINE

0104 109C 4C2210 JMP LOOP ;JUMP TO START
0105 109F
0106 109F ;
0107 109F ;********* STORE VIDEO REGISTERS *************************
0 08 091 F1
0109 109F 8DC1C0 SREG STA VREG ;STORE BYTE1
0110 10A2 8CC1C0 STY VREG ;STORE BYTE2
0111 10A5 60 RTS ;RETURN
0112 10A6
0113 10A6 ;************* LOAD KEYBOARD INPUT ***********************
0114 10A6
0115 10A6 2C10CO LOADN BIT KSTRB ;CLEAR KEYBOARD
0116 10A9 2COOCOWAIT BIT KBD ;TEST KEYBOARD

0117 10AC 10FB BPL WAIT ;IS KEY PRESSED ?
0118 10AE ADOOCO LDA KBD
0119 10B1 29FO AND #$FO ;TEST IF NUMERICAL INPUT
0120 10B3 C9CO CMP #$CO
0121 10B5 F006 BEQ LETER
0122 10B7 ADOOCO LDA KBD
0123 10BA 290F AND #$OF ;MASK OFF HIGH NIBBLE
0124 1OBC 60 RTS ;RETURN
0125 1OBD ADOOCOLETER LDA KBD
0126 1000 18 CLC
0127 10C1 6909 ADC #$09 ;CONVERT INPUT TO HEX VALUE
0128 10C3 290F AND #$OF ;MASK OFF HIGH NIBBLE
0129 10C5 60 RTS ;RETURN
0130 10C6
0131 10C6 ;************************ TABLES ***
0132 10C6
0133 10C6 02 ITAB BYT $02,$C2,$01,$80 ;INITIALIZE TABLE
0133 10C7 C2
0133 10C8 01
0133 10C9 80
0134 10CA 01 BYT $01,$OE,$00,$01
0134 10CB OE
0134 1000 00
0134 10CD 01
0135 10CE
0136 10CE 40 ATAB BYT $40,$60,$00,$03 ;SPRITE 0 ATTRIBUTE
0136 10CF 60
0136 10D0 00
0136 10D1 03
0137 10D2 60 BYT $60,$60,$04,$07 ;SPRITE 1 ATTRIBUTE
0137 10D3 60
0137 10D4 04
0137 10D5 07
0138 1OD6 40 BYT $40,$80,$08,$OB ;SPRITE 2 ATTRIBUTE
0138 10D7 80
0138 10D8 08
0138 10D9 OB
0139 10DA 60 BYT $60,$80,$OC,$OF ;SPRITE 3 ATTRIBUTE
0139 10DB 80
0139 1ODC OC
0139 1ODD OF
0140 LODE
0141 LODE FF80 PTAB DBY $FF80,$8080,$8080,$8080 ;SPRITE 0 PATTERN
0141 10E0 8080
0141 10E2 8080
0141 10E4 8080 Listing 1 continuedon page 76

72 August 1982 ^' BYTE Publications Inc

Listing I continued:

LINE# LOC CODE LINE

0142 10E6 8080 DBY $8080,$8080,$8080,$80FF ;16 X 16 PIXELS
0142 10E8 8080
0142 10EA 8080
0142 10EC 80FF
0143 10EE FF01 DBY $FF01,$0101,$0101,$0101 ;32 BYTES / SPRITE
0143 10F0 0101
0143 10F2 0101
0143 10F4 0101
0144 10F6 0101 DBY $0101,$0101,$0101,$O1FF
0144 10F8 0101
0144 10FA 0101
0144 10FC 01FF
0145 10FE
0146 10FE FF80 DBY $FF80,$879F,$9880,$8083 ;SPRITE 1 PATTERN
0146 1100 879F
0146 1102 9880
0146 1104 8083
0147 1106 8380 DBY $8380,$8098,$9F8F,$80FF
0147 1108 8098
0147 110A 9F8F
0147 110C 80FF
0148 110E FF01 DBY $FF01,$F1F9,$1919,$31F1
0148 1110 F1F9
0148 1112 1919
0148 1114 31F1
0149 1116 F139 DBY $F139,$1919,$F9Fl,$01FF
0149 1118 1919
0149 111A F9F1
0149 111C 01FF
0150 111E
0151 111E AA55 DBY $AA55,$AA55,$AA55,$AA55 ;SPRITE 2 PATTERN
0151 1120 AA55
0151 1122 AA55
0151 1124 AA55
0152 1126 AA55 DBY $AA55,$AA55,$AA55,$AA55
0152 1128 AA55
0152 112A AA55
0152 112C AA55
0153 112E AA55 DBY $AA55,$AA55,$AA55,$AA55
0153 1130 AA55
0153 1132 AA55
0153 1134 AA55
0154 1136 AA55 DBY $AA55,$AA55,$AA55,$AA55
0154 1138 AA55
0154 113A AA55
0154 113C AA55
0155 113E
0156 113E AAAA DBY $AAAA,$AAAA,$AAAA,$AAAA ;SPRITE 3 PATTERN
0156 1140 AAAA
0156 1142 AAAA
0156 1144 AAAA
0157 1146 AAAA DBY $AAAA,$AAAA,$AAAA,$AAAA
0157 1148 AAAA
0157 114A AAAA
0157 114C AAAA
0158 114E AAAA DBY $AAAA,$AAAA,$AAAA,$AAAA
0158 1150 AAAA
0,158 1152 AAAA
0158 1154 AAAA Listing 1 continued on page 78

76 August 1982 (^) BYTE Publications Inc

Listing 1 continued:

LINE# LOC CODE LINE

0159 1156 AAAA .DBY $AAAA,$AAAA,$AAAA,$AAAA
0159 1158 AAAA
0159 115A AAAA
0159 115C AAAA
0160 115E
0161 115E .END

ERRORS = 0000 <0000>

SYMBOL TABLE

SYMBOL VALUE

ATAB 10CE CBACK 104C CSIZE 105B
FILL 1019 INIT1 1004 ITAB 1OC6
JUMP 1099 KBD 0000 KSTRB CO10
LETER 1OBD LOADN 10A6 LOOP 1022
MOVE 107A NEXA 102B NEXF 1017
NEXTS 1040 ONE 106C PTAB LODE
SLOT 0040 SREG 109F VDATA COCO
VREG COC1 WAIT 10A9
END OF ASSEMBLY

Compare our price and performance.
Le Monitoris second to none!

A completeline of monitors with
these outstanding features.

• 9" and 12" models
• Green or white

phosphor
• 80x24 character

display
• High resolution-800

lines, non-glare CRT
• 1 year warranty!

Dealer Inquiries
Invited

Pi-Tech Limited Q.I. Distributors
2 DouglasPike 18720 Oxnard
Smithfield , RI 02917 Tarzana, CA 91356
(401) 231-2080 (800)423-5886

in CA (213) 996-2252

78 August 1982 ` BYTE Publications Inc Circle 329 on inquiry card. Circle 268 on Inquiry card. -p.

Text continued from page 67:

TELL 0
SETSHAPE :BOX
SETCOLOR :GREEN
SXY 20 20

The first command specifies that
sprite 0 is being addressed. The sec-
ond tells Logo to use the predefined
box pattern, while the third says that
the sprite is to be colored green (re-
member, the rest of the sprite plane
will be transparent). Then the fourth
command states that the sprite is to
be drawn at coordinate 20,20.

Now, to add the blue box as sprite
1 at x,y coordinates 12,12.

TELL 1
SETSHAPE :BOX
SETCOLOR :BLUE
SXY 12 12

Finally, to draw the red box as
sprite 2 at position 5,5.

TELL 2
SETSHAPE :BOX
SETCOLOR :RED
SXY 5 5

A turtle can be drawn simply by
using a similar procedure substituting
the command SETSHAPE :TURTLE.

At this writing, Terrapin MIT Logo
does not support turtle velocity
(automatic constant movement ac-
tuated by the commands SETSPEED
and SETHEADING) as does the Logo
package available for the Texas In-
struments TI 99/4A microcomputer,

TEXAS INSTRUMENTS
INCORPORATED

but a future version of Terrapin's
product may do so.

In Conclusion
The TMS9918A Video Display

Processor has many more capabilities
than I have room to write about here,
and my examples of a few boxes and
turtles are an inadequate demonstra-
tion of the powerful combination of
the E-Z Color Graphics Interface and
Terrapin MIT Logo. I am certain that
you can fully appreciate them only by
observing a dynamic display and see-
ing how few commands are needed to
create it.

I don't usually get excited over
mega-bit-width processors or super-
high-level languages. What does ex-
cite me, however, is taking one of my
projects hot off the soldering iron and
seeing it operate so easily in
synergism with someone else's work.
After seeing the graceful mating of
the E-Z Color Graphics Interface with
Terrapin MIT Logo, I can't help but
be excited about other sprite-graphics
applications.

Next Month:
Build the Micro Vox text-to-speech

voice synthesizer.n

References
1. Guttag, Karl and John Hayn. ''Video Dis-

play Processor Simulates Three Dimen-
sions ,' Electronics, November 20, 1980,
page 123.

2. Nelson, Harold. ''Logo for Personal Com-
puters," BYTE, June 1981, page 36.

3. TMS9918A Video Display Processor.
Houston, TX: Texas Instruments Semicon-
ductor Group, 1981.

Editor 's Note: Steve often refers to previous

Circuit Cellar articlesas reference material for

eachmonth'scurrent article.Most of these past

articles are available in reprint books from

BY TEBooks, 70 Main St., Peterborough, NH

03458. Ciarcia's Circuit Cellar, Volume I,

covers articles that appeared in BY TE from

September 1977throughNovember 1978.Ciar-

cia's Circuit Cellar, Volume II, contains articles

from December 1978 through June 1980.Ciar-

cia's Circuit Cellar, Volume III, containsthe ar-

ticles that were published from July 1980

through December 1981.

to rr cr ive .i r ornf>Iotu or of Ci(lra,i's

Cur urt Cr lhr f^rolr r I kits w,111,lhk^ Non) Ow
Mir rorrnn(. cirr tOO on rhl Ioo,iitor Scrvicr,

nyuiry I <Iril or Ii f or k of Lht ni,+rl,i^int

Parts Source
The following products are available from:

The Micromint Inc.

917 Midway

Woodmere, NY 11598

telephone: (516) 374-6793

(for technical data)

(800) 645-3479

(orders only)

Apple II plug-compatible E-Z Color Graph-

ics Interface , provided with user manual,
sample programs , and TMS9918A refer-

ence manual.
Assembled and tested $175
Kit $150

Terrapin MIT Logo for the Apple I1; re-

quires 48K-byte user memory and one
floppy-disk drive.

On DOS version3.3 disk. .Call for price

S-100-bus and IBM Personal Computer ver-

sions of the E-Z Color GraphicsInterface

are planned . Call for price and availability.

Prices include shippingin the U.S.Foreign

orders add $8 forshipping. Residentsof the

stateof New Y ork please add 7%sales tax.

New! TI LCD Programmer.
Hexadecimal and Octal Calculator/Converter.
The brand new tilt-top TI LCD Programmer can save you
hours of work . It was designed specifically for the
problems you do, and has features that make it ideally
suited for applications in computer programming,
debugging, repair and digital logic design.

• Performs arithmetic in any of three number bases - OCT,
DEC, HEX.

• Integer , two's complement arithmetic In OCT and HEX.
• Ones complement capability in OCT and HEX.
• Converts numbers between OCT , DEC and HEX.
• Fifteen sets of parentheses available at each of four

processing levels.
• Logical functions AND, OR , EXCLUSIVE OR and SHIFT

operate bit by bit on OCT or HEX numbers.

Unisource Electronics has committed to buy Ti' s initial
production of this unique product . Availability is
limited! Order now.

15-Day Free Trial.
The best way to evaluate the TI LCD
Programmer is to try it yourself - on the
job - for 15 days. If you're not 100%
satisfied , simply return It for a full refund.
Order now by calling toll-free:

1-800-858-4580
In Texas call 1.806 .745.8835
Lines open 8 am to 8 pm CST

Just give us your name , shipping address
and Visa or MasterCard number and we
will charge the tax deductible ' $75.00
purchase price , plus $2 .00 shipping and
handling (Texas residents also add 5%
sales tax) to your account . Or send your
check or money order to:

Unisource Electronics, Inc.
P.O. Box 64240 • Lubbock, Tx. 79464

When used for business.

1

80 August 1982 Os BYTE Publications Inc Circle 414 on Inquiry card.

